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1. INTRODUCTION

A central problem in developing effective smoke obscurants

for space applications is to maximimze volumetric extinction or

absorption at the wavelength of the incident electromagnetic

radiation. Yet this is a problem without a general solution.

There are an enormous number of different kinds of obscuring

particles: they may vary in composition, shape, and size. To

choose a combination of particles that will give the greatest

obscuration over the largest possible wavelength interval by

doing detailed calculations for all possible particles--even if

the necessary analytical tools were available--would be an

endless undertaking. Nevertheless, it is possible to make

recommendations based on very general considerations. One can

establish bounds not on extinction at any wavelength, but rather

extinction integrated over all wavelengths, by invoking sum

rules.
AIR FO -FCE 0? ST'I TTFIC r-MSARCH (AYSC)
SVICE OF MIJTMITTAL TO DTIC
This teehn LcFl repo't has been revieved and is

2. SUM RULES FOR EXTINCTION mpproved for public rele-se lAWAFR 190-12.Distrlbyution is ulimited,
A1THMa J. Y3EM

Chief, Technical Informationa Division
2.1 General Considerations

QUALITY

Sum rules follow from very general relations called

dispersion or Kramers-Kronig relations. Consider two H

time-dependent physical quantities, which we may call the input

and the output; the corresponding Fourier transforms, which are

complex functions of frequency w , are denoted by X.(W) and
1

X( 0 ). If the relation between these two transforms is linear

4 I .. .
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X() = R(w)Xi(w),

and causal (the output cannot preceded the input in time), then

the real and imaginary parts of the response function R(w) are

connected by integral relations (subject to restrictions on the

asymptotic behavior of R).

Although dispersion relations are important in elementary

particle physics (e.g., Goldberger, 1960) and some areas of

optics, particularly optical properties of solids (e.g., Stern,

1963), they have been largely ignored by workers in the field of

absorption and scattering of light by small particles. One

exception is the work of Purcell (1969), which has received

little attention. Box and McKellar (1978) derived an expression

for integrated extinction similar to Purcell's but from a

completely different point of view. Recently, Purcell's results

were rederived and extended by McKellar, Box, and Bohren (1982),

and an alternative treatment was given by Bohren and Huffman

(1983, p. 116). This treatment is outlined below because it

will form the basis for further investigation.

Consider a single particle illuminated by a plane,

S- monochromatic wave of frequency w and wavenumber k propagating

in the z direction. At sufficiently large distances r from the

particle, the electric field E scattered by it is transverse'-S

and is given asymptotically by

e ik(r - z)Es %  -k EX kr >> 1 (i)

~s -ik
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where the incident field (polarized in the x direction) E is

Ee and E = Eoexp(ikz - iwt). The vector scattering amplitude X-x~

in the forward direction determines the extinction cross section

Cext through the optical theorem

4 7
Cext = --TRe{S(O)}, (2)

where S(O) is the projection of the forward scattering amplitude

onto the direction of polarization of the incident beam.

Because the relation (1) is linear and causual (the

scattered wave cannot precede the incident wave in time), the

real and imaginary parts of S(O) are connected by integral

relations. However, the asymptotic behavior of S(O) is such

that it is not S(O) itself that satisifies these relations but

rather a suitable modification of it. For integral relations to

exist, S(O) must vanish in the limit of infinite frequency. But

it follows from Fraunhofer diffraction theory that for

sufficiently high frequencies

S(O) - 2G , (3)
4 nc2

where c is the speed of light in vacuo and G is the geometrical

cross sectional area projected onto the incident beam (for a

sphere of radius a, G = na 2). The function F formed from S

F(w) S(O) 2G (4)
w2 4rC

2
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vanishes in the limit of infinite frequency; if S(O) is analytic

in the top half of the complex frequency plane (this is required

by causality) and decreases at least as W 2 at low frequencies,

then F is also analytic, hence its real (F') and imaginary (F'')

parts are connected by the dispersion relations

F' = 2 pJ2F"( d , (5)
Tr IQ2~ - w

0

F''(W) = - 2_ J - dQ (6)

0

where P denotes the Cauchy principal value of the integrals.

If we now substitute (2) in (6), we obtain the dispersion

relation satisfied by the extinction cross section

Pj -ext (') dQi = -2 72C 2 I{(~ 7
Q2 - (7)

d

It is tempting to take the limit of (7) as the frequency goes to

zero and write

li C ext (Q) d = ( ) 2 2 liM Im{S(0)}

urndS Q2 dQ = -2ff2c (8)
W-)0 j 2 2 j2 CO 0

0 0

Indeed, this is what has been done previously. But underlying

(8) are some implicit assumptions that we must now investigate.

2.2 Requirements on the behavior of Cext at low frequencies

Let us suppose that the limit of the right side of (7) as

• " €~~~~~~~~~~~~. . o %.. .. . . ........ . . . .o ,.. - ,.. . . . . . . . .., - .- .* *. *• -. * . " , .



5

the frequency goes to zero exists. This means that the limit of

the left side also exists, but it does not necessarily follow

that this limit is

ext (2) dQ (9)

0

The Cauchy principal value is also obtained as a limit, and the

order of limits cannot always be interchanged. Suppose, for

example, that Cext were a constant. Since C is inherently
ext wext

positive, it follows that (9) diverges because the integral of

i/Q 2 over any region containing the origin diverges. Thus, it

is clear that there must be restrictions on the low frequency

behavior of Cext in order for (8) to be valid. For simplicity,

let us assume that Cext is proportional to the frequency squared

at low frequencies. What we want to prove is that

lim P0 C t M e ) (10)
W-*O 1J0 J -wQ2

0 0

From the definition of the Cauchy principal value, the left side

of (10) is
I 6  () C Cx(Q)

lim lim ext dQ + xt d
W 0 6-0 Q2 - W2  J 2 _ (11)

0 W+6

+ ext() d
Q 2 _ W 2

We can make w and 6 as small as we wish (but not zero) subject

to the requirement that w> 6. The upper limit of integration a
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can also be made as small as we wish subject to the requirement

that it is greater than w + S. If Cext is proportional to the

frequency squared at sufficiently low frequencies, then we can

substitute the low frequency expression in the first two

integrals in (11). These integrals can now be evaluated, and

both limits taken. The result is (10). Thus, if Cext decreases

as the frequency squared in the limit of zero frequency, (8) is

valid. This requirement is more stringent than it need be. All

that is required is that at low frequencies Cext decrease as
.1

frequency to the power 1 + a , where a is any positive number.

At sufficiently low frequencies, the extinction cross

section of an ellipsoid composed of either a simple free

electron metal or a simple insulator is proportional to

frequency squared (see, e.g., Bohren and Huffman, 1983, pp. 345

and 348). Thus, the low frequency behavior of Cext for real

particles is such that (8) is valid.

It also follows from the preceding analysis that there do

not exist sum rules for the extinction cross section with any

form other than (9). For example, suppose we inquire into the

existence of a sum rule for the quantity wCext . The low

frequency limit of this quantity is such that we may interchange

the order of limits; that is,

C () I Cext( )lim P ext ext dQ.
W+O o2 - w2 Q

0 0

Now, however, Cext does not have the proper behaviour at high

frequencies; that is, wF does not vanish in the limit of
L
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infinite frequency, which is required for the validity if the

integral relations (5) and (6). The same argument holds for any

quantity of the form JnCext, where n is any number other than

0. Thus, we conclude that only one sum rule for Cext exists.

2.3 Sum rules when magnetic dipole terms are included

To proceed further we need to determine the limit on the

right side of (8), that is, we need to know the low-frequency

limit of the forward scattering amplitude. For particles

composed of an electrical insulator, this amplitude will be that

given by electrostatics, i.e., the electric dipole term in a

multipole expansion of the electromeinetic field scE. tered by

the particle. But for metallic particles, it is not clear if

this choice is correct: at far infrared frequencies, the

magnetic dipole term can be equal to or even greater than the

electric dipole term. For this reason, the role of the magnetic

dipole term in sum rules was investigated.

In order to apply Rayleigh theory (i.e., electrostatics) to

scattering by small particles, two conditions must be satisfied:

the size parameter x = 2na/X , where a is a characteristic

linear dimension of the particle, must be small compared with

unity as must Imix, where m is the particle's complex refractive

index. Let us consider a simple free-electron metal, the

dielectric function of which is given by the Drude formula

2

E = E + iE = 1 - P (12)
W 2 + iYW
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where is the plasma frequency (typically in the ultraviolet)

and Y is a damping factor, which also has the dimensions of

frequency. The refractive index is the square root of £ . The

size parameter x can be written as

-a
x - , (13)

from which it is clear that x vanishes in the limit of zero

frequency. But since Iml does not vanish in this limit for a

material described by (12), it is not obvious that Imix does.

The modulus of the refractive index is

Im I  = (6,2 + E--2) • (14)

For frequencies w much less than y , and subject to the

requirement that Y<< w, we can combine (12)-(14) to obtain

w a
Imix P- Vw/y W << Y << W (15)

Thus, provided thaty is not identically zero, Imix also vanishes

in the limit of zero frequency. This condition on y is

equivalent to requiring the dc conductivity w 2 /y to be finite.
P

To proceed further, we must consider a specific particle.

The forward scattering amplitude for a sphere is an infinite

series in the scattering coefficients an and bn:

S(O) = Z(2n + 1)(a n + b n ) (16)

" € -". - " " "'". " '''". .'. .' --." ." " " "'/ .'-"'2- '.2, " ''. " " 'v , ,-"-". . "-"-. 2 "-""n. .-. .n"-)
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For sufficiently small x and Imix, the electric dipole term a1

and the magnetic dipole term b dominate the series (16) and are

given approximately by

2x ' E - I x71 = -i+ 2 1 45

If y is not identically zero, then for a material with

. dielectric function (12)

lim b /a1 = 0 (18)
-FO

On physical grounds, we expect (18) to be valid for particles of

arbitrary shape. Thus, we have established that the sum rule

(8) is valid even for metallic particles and that the scattering

amplitude in the zero frequency limit corresponds to electric

dipole radiation, provided only that the dc conductivity is

finite.

Before proceeding, we need to consider the consequences of

mean free path limitations for sum rules.

2.4 Limitation of the mean free path

It will again be useful to consider a specific particle, a

sphere. We also define the volumetric attenuation coefficient

"v as the extinction cross section per unit particle volume. It

follows from (8), (16), and (17) that the volumetric attenuation

- i ~ -- ~ 2~~ ~~~l--~22 - ~*.*.
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coefficient is independent of particle size and depends only on

the low frequency limit of the dielectric function

Id = 3,rn lim Re (1( 9)

3.2v&w + 2 (9

We have also transformed the variable of integration from

frequency to wavelength. For a material with dielectric

function (12), the term on the right side of (19) is

W 2 (3 W2 - W 2

Re C=W P_ _ _ __ . (20)
Re (w) + 21 (3W2 - w 2) 2 + 9y 2W 2

P

The limit of (20) as the frequency goes to zero is unity,

regardless of the value of y, and in this instance

a dA = 3m2 .  (21)

0

The damping term y arises from scattering of electrons by

the lattice, electron-phonon scattering. If it were not for

electron-phonon scattering, the dc conductivity of a metal would

be infinite. In a sufficiently small particle, scattering of

electrons by its boundary may be more important than scattering

by the lattice. That is, the mean free path for scattering by

the boundary may be less than that for scattering by a phonon.

This was first pointed out by Doyle (1958), and subsequently

investigated by Doremus (1964), Kreibig and von Fragstein

(1969), Kreibig (1974), and Granqvist and Hunderi (1977).

Kreibig (1974) interpreted absorption by small silver particles
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by modifying the damping constant in the Drude expression (12).

This damping constant, which is the inverse of the collision

time for conduction electrons, is increased because of

additional collisions with the boundary of the particle. Under

the assumption that the electrons are diffusely reflected at its

boundary, can be written

Y = ¥bulk + V F/L, (22)

where Ybulk is the bulk metal damping constant, vF is the

electron velocity at the Fermi surface, and L is the effective

mean free path for collisions with the boundary. Kreibig took L

to be 4a/3 for a sphere of radius a. We have already shown,

however, that (21) is independent of Y . Thus, we conclude that

the limitation of the electron mean free path by the boundaries

of a small particle do not affect its integrated extinction.

Detailed calculations for spheres (see Bohren and Huffman, 1983,

p. 338) are in accord with this conclusion. When particles are

sufficiently small, the effect of their boundaries is to

decrease peak extinction while simultaneously broadening it in

such a way that integrated extinction remains constant.

3. SUM RULES FOR PARTICLES OF VARIOUS SHAPES

3.1 A general result and its interpretation

The scattering amplitude S(0) for any particle that is

CC7k
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sufficiently small compared with the wavlength of the light

illuminating it is proportional to its volume. Thus, it follows

from (8) that integrated extinction per unit volume of any

particle is independent of its size: it depends only on its

composition. When a particle is illuminated by an

electromagnetic wave, various electromagnetic modes may be

excited. The larger the particle, the greater tha number of

such modes. This follows from simple physical reasoning,

although it is also evident from exact solutions to scattering

problems. The smaller the particle, the fewer the modes that

can be excited. Yet integrated extinction is independent of

particle size. That is, a fixed amount of total extinction must

be shared by modes, the number of which increases with

increasing particle size. Thus, the larger the particle, the

more a fixed amount of total extinction has to be shared with an

ever larger number of modes. Hence the extinction associated

with each resonant mode must decrease with increasing size.

This is turn implies that the smallest particles have the

greatest extinction. This is a very general result. It can be

verified in specific instances. For example, the greatest

possible extinction per unit volume of a sphere is obtained for

spheres much smaller than the wavelength. This high volumetric

extinction, however, is concentrated in a narrow spectral band,

as implied by the sum rule.

3.2 Ellipsoidal particles
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Equation (8) is completely general. To apply it to a

definite particle requires the scattering amplitude in the

forward direction in the limit of zero frequency. Consider a

homogeneous ellipsoidal particle of volume v illuminated by

light polarized along one of its principal axes. At

sufficiently low frequencies, this particle is equivalent to a

dipole with (induced) moment

E1 = 1 + V E 1 E0 (23)

where E is the incident field, L is a geometrical factor lying
jw 0

between 0 and 1, and E is the permittivity of the surrounding

medium (assumed to be nonabsorbing). In general, there is a

distinct geometrical factor L. for each of the three principal

axes of the ellipsoid, the sum of which is unity. In general,

the incident light is not polarized along one of the principal

axes, so we have to resolve the incident electric field into its

components along the principal axes of the elliposoid. We

denote these coordinate axes, which are fixed relative to the

particle, by xyz. Axes relative to which the incident light is

specfied (laboratory coordinate system) are denoted by x'y'z'.

If the incident light is polarized along the x' axis, the

scattering amplitude corresponding to (23) is

k3- r -or , (24)T~rE M E ,

where er is a unit vector in the scattering direction. The

.~r"" .. * - .
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projection of (24) onto the x' axis in the forward direction is

S ( O ) - k 3  i

4 Tr 1

where

A = cca + a 2 + Ca 2
11 1 11 2 21 3 31'

a = v (25)
1 +L.(e-1i)

The quantities al1 etc. are direction cosines between the primed

and unprimed axes, and they satisfy

2 + 2 + 2 1

11 21 31

If we combine substitute (25) in (18) we obtain the sum rule

Cext() Tv .3 2 P- (26)J - dS lim Im i E aL(Q2 2c I J
W-*o j=1 1 + LJ (C

0

As a check on (26), we note that it reduces to (19) when all the

geometrical factors are equal (i.e., the ellipsoid is a sphere)

and the variable of integration is changed from frequency to

wavelength.

A less general, but more useful, form of (26) is obtained

by averaging over all orientations of the ellipsoid. Unless

special care is taken, a cloud of ellipsoidal particles is

likely to be randomly oriented, in which instance
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<a2> = <a 2 > = <a 2 >
1a1 21 31 3'

where the brackets indicate an average over all directions with

equal probability per unit solid angle. The corresponding

volumetric attenuation coefficient satisfies

av dX = Tr lim Re I E - 1 (27)
j o j=1 3 + 3L. (E - 1)

where cv = <Cext>/v. Again, this reduces to (19) when all the

geometrical factors are equal.

Each term in the sum on the right side of (27) has the form

(m W- 1)(3 + 3L Ce - 3L.) + 3L. 1
2 (limn (28)

w--o (3 + 3L EA - 3L.) 2 + 9L £ 1 2

i i 3

Let us consider the low frequency limit of (28) for two classes

of materials, metals and polar insulators. The Drude dielectric

function (28) applies to an ideal free-electron metal. The

imaginary part of this dielectric function goes to infinity in

the limit of zero frequency. Hence, for an ideal free-electron

metal (27) becomes

g2 3
d x = 23 1 (29)1COv 3 J=l L i

0

Now consider an insulator, one for which the imaginary part of

the dielectric function goes to zero in the low-frequency limit.

For such a material (28) is

-, .i
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urn- 1 (30)lim30

)-o 3 + 3L.E - 3L.

Thus, if

L. lim i/(E' - 1) (j = 1,2,3), (31)

integrated volumetric extinction is still given (approximately)

'by (29).

All the geometrical factors L. for a sphere are 1/3. The

low-frequency limit of the dielectric function of water is more

than 80. Thus, we obtain the unexpected result that integrated

extinction by a water droplet is (approximately) that same as

that by an equal-volume metallic sphere. The extinction spectra

of these two particles are markedly different, and yet the

integrals of these spectra are the same. This similarity is not

maintained for all shapes. As the particle shape deviates more

from sphericity, at least one of the geometrical factors L must

decrease to the point where (31) is no longer satisfied.

Nevertheless, for a wide range of shapes integrated (volumetric)

*. extinction by metallic particles is approxmately equal to that

-* of insulating particles made of a substance with a high

dielectric at low frequencies function (e.g., water in both

liquid and solid phases).

4. SOME THOUGHT ON OPTIMIZING ATTENUATION

The fraction T of electromagnetic radiation transmitted by
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a cloud of particles is a product

T = f exp(-t .f.z) (32)

wherea is the volumetric attenuation coefficient of the jth

kind of particle, f. is the volume fraction in the cloud (the

subscript j may denote composition, size, shape, or even

orientation), and z is the cloud thickness. Equation (32) is a

lower limit on the cloud transmission; T can be greater because

of multiple scattering. The quantity fjz is the total volume of

particles of the jth kind per unit area of the cloud.

Transmisison can therefore be made arbitrarily low by increasing

the mass of particles, which is effective but not efficient. To
minimize the amount of material, one must maximize vj' and not

merely over a narrow range of wavelengths. We can rewrite (32)

as

-lnT/fz = Z vj (33)
7' ~Jj

where

f= f , f = f /f , f j 1.
i i

So we want to maximize the sum on the right side of (33). 1

argued in the Introduction, that to do this by detailed

calculations would be an endless task, even if all the

analytical tools were at hand (which they are most definitely
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not). Nevertheless, one can establish some bounds.

First, we can establish some practical lower bounds. The

extinction cross section of any particle larger than the

wavelength of the light illuminating it is approximately 2G,

regardless of its composition, where G is the geometrical cross

sectional area of the particle projected onto the incident beam.

G is proportional to some characteristic length d of the

particle (for a sphere, its diameter). The volume of the

particle is proportional to the cube of d. Thus, for such a

particle

av = Cext/v = K/d, (34)

where K is a constant depending on particle shape (K = 3 for a

sphere). Let us take d to be of order 1 Pm, which gives av of

order 104 cm-1 ; if d is ten times larger, then cv is

correspondingly less. Thus, d ,, 1 pm is more or less the

smallest size for which (34) is a good approximation for visible

and near-visible wavelengths. It therefore seems that a

volumetric attenuation coefficient of order 104 cm- 1 represents

a kind of lower bound: it is the value that can be obtained

without making much of an effort. What is the upper bound?

According to the sum rule (27) integrated volumetric

*attenuation is independent of particle size. I argued in Sec.

3.1 that when a particle is illuminated by an electromagnetic

wave, various electromagnetic modes may be excited. A specific

example of this is provided by a sphere. The extinction cross
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section of a sphere is given by the infinite series

Cext = (27T/k 2)Re{2 (2 n+l)(an + bn)} (35)

Each coefficient corresponds to an electromagnetic mode of the

* sphere; an correspond to modes of electric type, bn to modes of

magnetic type. The larger the sphere, the more terms in (35)

are needed for satisfactory convergence; that is, the larger the

sphere, the more modes are excited by the incident wave.

According to the sum rule (27), the integrated (volumetric)

extinction is independent of particle size. Thus, the larger

the particle, the more that a fixed amount of total extinction

has to be shared by more modes. Conversely, the smaller the

particle, the fewer the modes, hence the more extinction

associated with each one of them. To make my point, I have

invoked a sphere, but my conclusion is independent of particle

shape.

We therefore must look to small (compared with the

wavelength) particles for the greatest possible extinction per

unit volume. It follows from (27) and (29) that for a given

shape, metallic particles will have the greatest integrated

extinction. Moreover, it is the extreme shapes that gives (29)

its greatest value. For a (perfectly sharp) needle or a

(perfectly flat) disc, L1 = 0, hence for these ideal particles

integrated extinction is infinite.

To estimate the greatest possible volumetric extinction, I

did some simple calculations for very small (compared with the
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wavelengths of ultraviolet light) spheres and randomly oriented

discs and needles of aluminum. Aluminum is almost an ideal

free-electron metal; its dielectric function is given to good

approximation by (12). I took the plasma frequency (in electron

volts) to be 15 eV; the damping factor was 0.6 eV. The results

are shown in Fig. 1. Note that the sphere gives the greatest

peak extinction. This is not surprising in light of the sum

rules. Fewer modes are excited in a sphere than in an

asymmetric particle such as a needle or a disk. Peak extinction

is about 10 cm -I. I claim that this is a practical upper

. bound. Moreover, this bound cannot be obtained over a wide

range of frequencies. A practical upper bound over at least one

decade from the ultraviolet to the near infrared is 106 cm- ,

and this would have to be obtained with a mixture of particles

having different shapes.

I argued at the beginning of this section that volumetric

extinction of 104 cm-1 could be obtained with almost no thought.

One could almost select particles at random. With a bit of

thought it is possible to increase this number by a factor of

100. A further factor of ten increase might be possible, but

this would likely be obtained at the expense of high extinction

in one spectral region being paid for by much lower extinction

in another.
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Fig. 1 Volumetric extinction by aluminum particles

that are small compared with the wavelengths

of ultraviolet light.
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